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Abstract

A common problem in statistics/chemometrics is to relate two data matrices (X and Y) to each
other, with the purpose of either prediction or interpretation. Usually one is interested in
understanding which directions in Y-space that can be predicted by which directions in X-
space. Several methods exist for this, for instance PLS regression and canonical correlation.
The present paper presents a new plot for visualising the relationship between X and Y. The
plot can be used for any regression method.

Introduction

A common problem in statistics/chemometrics is to relate two data matrices, usually denoted
by X and Y, to each other. The purpose is usually either prediction or interpretation. Several
methods exist for finding such relationships, both linear, non-linear, parametric and non-
parametric. In this paper we will concentrate on methods, which relate linear combinations of
X to Y or to linear combinations of Y.  The most commonly used methods in this group of
techniques are canonical correlation analysis (Mardia et al., 1979), multivariate linear
regression, principal component regression and partial least squares regression (Martens and
Næs, 1989), but a number of alternative methods and variants also exist. Most of these
methods also provide plotting tools to facilitate interpretation of the data. An important
question is whether these established plots are the most natural to use for interpretation of the
relationship between X and Y.

In this paper we propose a new plotting technique for multivariate linear regression models.
The plot can be used for any regression method, both for those mentioned above and for all
other linear methods, and is based on the final validated model relationship between X and Y.
The main idea behind the new plot, based on what we call principal components of
predictions (PCP), is to find the most dominating directions of Y that can be predicted from X

(usually denoted by Ŷ ), and to plot these directions together with information about which
subspace of X these directions correspond to. The procedure goes as follows:

• First build a predictor of Y based on X using for instance one of the methods mentioned
above. Validate the usual way by either cross-validation (CV) or prediction testing.
• Then run PCA on the predicted Y-values. The first two components represent the two main
directions of the part of Y that can be predicted from X  (the same for three etc.).  PCP scores
and Y-loadings are found directly from this decomposition.
• Finally calculate the corresponding X-loadings and make plots of scores and loadings the
regular way.

Note that this plot is not meant to replace regular PLS and PCR plots, it is rather to be
considered complimentary. We propose that the regular plots are still used for diagnostic
procedures, detection of non-linearities etc. The present plot focuses on the validated
relationship and is therefore primarily meant for visualising the final estimated model
relationship between X and Y. All good models, whether they are based on PLS, PCR or any
other method will therefore have almost identical PCP plots. We hope this plot can be used to



gain extra insight into how X and Y are related and that it can solve some of the controversy
regarding what type of plot that should be used for interpretation.

In the next section we will describe the mathematics of the plot and show how it is related to
regular tools such as principal components and projections. Then we will present an example
based on near infrared (NIR) and sensory analysis of sausages. Finally we present some
concluding remarks and give the MATLAB code for the plot.

The optimised score plot

Assume that we are in a situation where a number of response variables (Y) can be adequately
related linearly to as set of explanatory variables ( EXBY += ). Let us further assume that the
regression model is estimated. Any method can be used for the estimation, but for many
situations it is natural and advantageous to use a method like PCR or PLS which both handle
collinearity problems among a large set of X-variables.

The optimised score plot proposed here is based on first decomposing the predicted values of
Y  by the use of an singular value decomposition (SVD), i.e
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This decomposition has the property that for any dimension r, defined by the first r elements

in the sum above, account for as much as possible of the variation of Ŷ that can be described
by an r dimensional decomposition. Thus, the r first components will then describe as much
as possible of that part of Y that can be predicted by X.  The U-matrix is the matrix of PCP
scores. Accordingly,

       VSC =                                                                                  (2)

is the matrix of PCP Y-loadings. Note that this matrix can be obtained by regressing the Ŷ
matrix onto the scores U. Note also that since the predicted Ŷ -values can be written as linear
functions of X  ( BXY ˆˆ = ), the PCP components can also be written as linear functions of X:

1ˆ −= VSBXU                                     (3)

We may then want to see how the original X projects onto a space of PCP components. In
other words, we will calculate the PCP X-loadings (as for the Y-loadings) by regressing X onto
U. This can be expressed as

 UXP T=                                                                               (4)

So, we now have a set of scores and loadings, which can be plotted and interpreted in a
similar way as scores and loadings calculated from e.g. PLS or PCR.

In for instance PLS the explained Y-variance associated with each component is usually
calculated by cross validation. To calculate comparable measures for the PCP components,
we have to use PCP as a new regression method (but this is not the main purpose of PCP). To
calculate scores for a new X-observation, we use the weights that are presented in equation
(3). Thereafter, these scores (for a fixed number of components) are multiplied by the
transpose of the Y-loadings in (2) to obtain the predicted Y-values. Note that this special
regression method may be useful for prediction purposes in some cases. In fact, reduced rank
regression (Davies and Tso, 1982) is a special case, which is obtained when the basis for PCP
is classical multivariate regression.

A special case of PCP occurs when there is only one response variable. Only one PCP
component can be extracted. In this case, we suggest computing the second component as the



one that maximises the explained X-variance orthogonal to the single PCP component. This
procedure results in a nice score plot where the predicted values (Ŷ ) can be read directly from
the first axis.

Example

The example is taken from production of sausages. Fifty-seven different types of sausages
were produced (according to an experimental design) and they where measured by both near
infrared (NIR) reflectance spectroscopy and by sensory analysis. In total 16 sensory attributes
were measured by a trained sensory panel.  The main focus in the present paper is to consider
the relationship between the NIR data (=X) and the sensory data (=Y). We will focus on
differences and similarities between plots rather than on the interpretation itself. A detailed
description of this data set is given in Ellekjær et al. (1994).

In Figure 1 is presented the NIR data from the experiment.

Figure 1. NIR data from the experiment

In Figure 2 is shown the cross-validated explained variance for PLS and PCP based on two
components. The PCP results show how much of the Y-variance that is explained by basing
the PCP on the PLS solution indicated by the number of components given. As can be seen, as
many as 13 PLS components are needed in order to obtain the best possible results. A
reasonable result is however obtained already after 5 PLS components. We can see that the
two lines follow each other closely. This indicates that the part of the Y-data that can be
predicted by X is essentially two-dimensional. The large number of components needed to
explain Y must come from the complex relationship between the NIR and the sensory data.
Figure 3 presents the corresponding cross-validated error measures for the X-data.

Figures 2 and 3: Y and X-variance respectively (CV);  explained variance for PLS (———)
and for PLS followed by two-component PCP (--------).
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The PCP scores, for the optimal PLS model, are compared with the PLS scores in Figure 4. In
order to facilitate comparison, the scores are standardised to equal variance (note that the
description of PCP above already uses orthonormal scores) and they are matched by using so-
called procrustes rotation (Gower, 1975). This is done in order to focus on the important
differences and to avoid interpreting differences due to differences in rotation only. Straight
lines connect corresponding scores. The numbered end corresponds to PCP. As can be seen,
there are substantial differences between the scores. The change from one plot to the second
seems to be rather chaotic, meaning that the two plots will give a quite different first
impression.

Figure 4: Scores for PLS and rotated PCP  (The numbered end of line is rotated PCP)

The Y-loadings are presented in Figure 5. Here, the differences are smaller than they are for
the scores. The general trend is that the PCP loadings are further away from the centre. This
corresponds to the fact that the amount of explained variance with two components is larger
for PCP than it is for PLS.

Figure 5: The Y-loadings for PLS and PCP

The X-loadings are given in Figure 6 and 7. The loadings are different, but still they represent
almost the same spectral shapes.
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Figures 6 and 7: X-loadings for components 1 and 2; PLS (———) and PCP (--------).

The same plots were made using PCR instead of PLS. The best PCR model gave almost as
good results as the optimal PLS model. The PCP results based on PCR were very similar to
those obtained by PLS. Figure 8 compares the PCP scores based on PCR to those from PLS
(Procrustes rotation is used as above). The two sets of scores are not identical, but apart from
a few objects, the differences are negligible compared to PCP vs PLS (Figure 4). There are
also small differences between the X and Y-loadings from the two PCP decompositions (not
shown) and together these results illustrate the unifying potential of the present methodology.

Figure 8. Comparison of PCP components based on PLS and PCR.

In this data set the predictions can be improved using multiplicative scatter correction (Geladi
et al., 1985). In that case, comparison between PLS and PCP shows much of the same
tendencies as above, but a change is that differences along the first PLS dimension are less
important. The two first X-loadings from PLS and rotated PCP are shown in Figures 9 and 10.
The loadings for component 1 are very similar (Figure 9). Figure 10, however, shows that
there are some loading differences that may be of some importance for component 2.
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Figures 9 and 10: X-loadings for components 1 and 2 when the spectra are scatter corrected;
PLS (———) and PCP (--------).

Concluding remarks

If the optimal predictor in a multiresponse situation is found by PLS or PCR with two
components, the new PCP score plot will obviously be essentially the same as the traditional
plots. The new plot will simply be a rotated version. As was observed above, in a situation
where several PLS components are needed, the scores plots may be very different from each
other. In other examples considered (not reported here) we have also found other differences
between PCP and PLS plots. If the optimal PLS predictor is found by one component, then
the first PCP component will equal the first PLS component.

The new decomposition can be based on any regression method. The above procedure
assumes that there are at least 2 dimensions in the Ŷ -data. If this is not the case, i.e. if there is
only on Y-variable or the practical rank of Ŷ  is 1, additional components can be extracted by
optimising X-variance instead. This methodology is of special importance when there is one
response variable only. The fitted values are simply plotted along the first axis and the second
axis gives additional information about the X-data.

Note that the new plot can be of special importance for process monitoring. Interesting quality
parameters (Y) may for instance be measured indirectly by some online instrument (X). If a
regression model is estimated from historical data, one can extract PCP scores for new
observations as indicated above. The process can be monitored as a PCP score plot and the
two dimensions are optimal with respect to quality information.

Appendix: MATLAB code for the PCP decomposition

The decompositions of X and Y is written as

FTPFPXRX TT +=+= )(                                                                               (5)

ETCECXRY TT +=+= )(                                                                               (6)

where R is a matrix of weights made so that ITT T = , and where TYC T=  is the Y-loadings
and  TXP T=  is the X-loadings. The following code starts from the matrix of estimated
regression parameters (B) together with the X-matrix (X).
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[ U,S,V]= svd(X*B,0)               % SVD of Yhat
r1 = rank(S)                     % rank of Yhat
T=U(:,1:r1)                      % scores
R=B*V(:,1:r1)* inv(S(1:r1,1:r1))  % weights
P=X'*T                           % X-loadings
C=V(:,1:r1)*S(1:r1,1:r1)         % Y-loadings
r2 =rank(X) - r1                 % Complete the
if r2 > 0                        % decomposition
  [ U_,S _,V_] = svd(X-T*P',0)
  T=[ T,U_(:,1:r2)]
  R=[R ,(V_(:,1:r2)-R*( P'*V_(:,1:r2)))* inv(S_(1:r2,1:r2))]
  P=[ P,V_(:,1:r2)*S_(1:r2,1:r2)]
  C=[ C,zeros(size(C,1),r2)]
end

The first six lines make the ordinary PCP decomposition based on PCA (or SVD) of Ŷ . The
other lines complete the decomposition of X  (F=0 in (5)) by running PCA on the X-residuals
( TTPX − ). Note that the second line may be changed so that a practical rank is used instead
of the numerical rank.
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