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ABSTRACT

This article describes a new plot that aids understanding the relationship between two
response variables in a designed experiment. In addition to plotting the observed values
directly, we make a scatter plot of orthogonal contrasts from the general linear model. This
plot contains the same correlation information as the ordinary scatter plot. Therefore, one
can interpret how the effects of the various design variables contribute to the correlation
coefficient. This idea is also useful in more general cases. Any graphic presentation of the
original observations can be accompanied by a corresponding plot of orthogonal contrasts
that often will clarify the interpretation.
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1 INTRODUCTION

This article introduces new plotting methodology that is useful for illustrating relationships
between responses in designed experiments. The main idea is to make plots of orthogonal
contrasts for pairs of response variables that yield the same correlations as the ordinary
plots of observed values. In Section 2 we start the discussion by making scatter plots of
estimated effects from a fractional factorial design. A more general situation is treated in
Section 3 where orthogonal contrasts are derived from a response surface model. Section 4
applies the new scatter plot to chemometrics regression; the relationship between predicted
and measured values is illustrated. In Section 5, the concept of plotting orthogonal con-
trasts is extended to principal component analysis. Section 6 concludes with some final
remarks.

2 PLOTTING EFFECTS IN TWO-LEVEL DESIGNS

We consider a fractional factorial 25−1 design (Box et al., 1978), which has been analyzed
in Langsrud (2001). The effect of five different ingredients or processing factors on the
sensory quality of baguettes was studied. Our response variables are 16 sensory attributes
that were evaluated by a sensory panel. For each sensory response we can calculate 15
estimated effects; five main effects, seven (confounded) two-factor interactions and three
higher order interactions. An interesting question is how to identify significant effects, but
here we focus on illustrating the correlation between some of the responses.

We will first note that the uncentered correlation between two n × 1 data vectors, a
and b, can be expressed as

r̃(a, b) =
aT b√

aT a bT b
. (1)

To calculate the ordinary correlation between two response variables, we need to center
the data (subtracting the means) before applying the above function.

An ordinary scatter plot of two highly correlated (r=0.9861) responses, Garlic Flavour
and Odour Intensity, is presented in Figure 1(a). We see that the main cause of the high
correlation is a separation into two clusters. It turns out that this grouping corresponds
to one of the design factors, namely garlic content.

Figure 1(b) shows a corresponding scatter plot of the estimated effects. In this figure,
each of the 15 points corresponds to one of the 15 estimated effects. For instance, the point
at the upper-right corner plots the effect of garlic content on the Garlic Flavour against the
effect of garlic content on the Odour Intensity. By assuming a regression line through the
origin, we can interpret this plot as an another illustration of the correlation between the
two responses. That is, the above correlation coefficient (0.9861) can be computed from
the estimated effects by applying expression (1) directly without centering. In the section
below, we discuss this relationship further.

The two figures represent two different ways of illustrating that garlic content is causing
correlation. In Figure 1(a) we can also see that the correlation within each group seems
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Observations and effects in the baguette experiment
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Figure 1: The left panels contain ordinary scatter plots of original observations in the
baguette experiment: Garlic Flavour versus Odour Intensity (a) and Fresh Odour versus
Juiciness (c). Panels (b) and (d) contain corresponding plots of estimated effects, which
are calculated according to the underlying fractional factorial design.
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to be different. This type of information is lost in Figure 1(b). However, in many cases,
the ordinary scatter plot is less interpretable and Figure 1(b) represents a very useful
alternative.

Figure 1(c) shows a scatter plot of Fresh Odour versus Juiciness, which are moderately
correlated (r=0.7852). In this case, the corresponding plot (d) of estimated effects looks
quite similar. There is no indication that any particular design variables are causing
the correlation. Furthermore, by analyzing these responses, by e.g. normal probability
plotting, there is no indication of any significant effects. Although, a positive correlation
between these two sensory attributes seems reasonable.

3 PLOTTING CONTRASTS FROM RESPONSE

SURFACE MODELING

We consider the sausage experiment of Ellekjær et al. (1994), where Fat, Salt and Starch
were varied according to a 6× 3× 3 design. Fat has six levels (8%, 12%, 16%, 20%, 24%,
28%), Salt has three levels (1.3%, 1.6%, 1.9%) and Starch has three levels (1.5%, 4.5%,
7.5%). The 54 sausages were measured by both sensory analysis and by near infrared
(NIR) spectroscopy.

A suitable analysis is based on a model with the terms: Fat, Salt, Starch, Fat*Salt,
Fat*Starch, Salt*Starch, Fat2, Salt2, Starch2. Dependence between the regressors is avoided
by using an orthogonal polynomial specification, which is equivalent to an analysis based
on sequential sums of squares (Box and Draper, 1987). However, in order to compute an
entire set of n − 1 orthogonal contrasts, we fit a saturated model, which includes all the
53 terms up to Fat5*Salt2*Starch2. Including the intercept term, this model specification
defines a 54 × 54 matrix, X, of (hierarchically ordered) regressors. The orthogonal poly-
nomial specification is obtained by performing a Gram-Schmidt orthogonalisation of X
(Strang, 1988). The resulting orthogonal matrix, denoted as M , can be used to compute
contrasts.

In general, to obtain an entire set of orthogonal contrasts, we transform the data
through

Z = MT Y , (2)

where the n× q matrix Y contains n observed values for each of q response variables and
where M is an orthogonal n × n matrix derived from the general linear model. The first
column of M represents the intercept and accordingly the first row of Z contains scaled
mean values. The other n− 1 rows of Z are our observed contrasts.

We consider the first NIR measurement (1100 nm) and the first sensory attribute
(Whiteness) whose correlation is -0.7318. The ordinary scatter plot and the corresponding
plot of contrasts are presented in Figure 2 (a) and (b) respectively. As above, we can apply
expression (1) to compute the correlation coefficient from the contrast values. It is easy
to show that the uncentered correlation (1) is invariant under orthogonal transformations.
That is, r̃(a, b) = r̃(Ra, Rb), where R is an arbitrary orthogonal matrix. However, to
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Observations and contrasts in the sausage experiment
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Figure 2: Panels (a), (c) and (e) contain ordinary scatter plots of original observations in
the sausage experiment, where NIR at 1100 nm, Color Strength, and Off-flavor are plotted
against Whiteness. Panels (b), (d) and (f) contain corresponding plots of contrasts, which
are calculated according to response surface modeling.
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compute contrasts from the original data we require an orthogonal matrix, M , where the
first column represents the intercept. Then, omitting the first row of Z = MT Y before
applying expression (1) corresponds to centering the data. Note that if we had centered
Y before performing the transformation (2), then all entries in the first row of Z would be
zero. Also note that the ordinary standard deviation of each response can be calculated
directly from the contrasts by using a formula where subtracting the mean is omitted.

Figure 2(b) shows that the Fat term (first order) is the main cause of the correlation.
Also the Starch term contributes importantly to the variation in the data, but that point
does not support a line from the Fat point through the origin. In fact, if we exclude Starch
from Figure 2(b), the correlation becomes -0.8454.

Figure 2 (c) and (d) illustrate two highly correlated (r = -0.9901) sensory responses,
Color Strength and Whiteness. The contrasts for the two important regression terms
(Starch and Fat) lie on a common line through the origin. The direction of this line is also
supported by the other contrasts and we cannot conclude that the correlation is caused by
any particular design variable. However, most of the variation in the data is explained by
Starch and Fat.

Both responses in Figure 2 (e) and (f) are affected by Starch and Fat, but these terms
have opposite influence on the correlation. The result is almost no correlation (r=0.1361).

4 PLS PREDICTIONS VERSUS MEASURED

VALUES

With reference to the above sausage experiment, the sensory attribute, Meat Flavor, has
been modeled as function of the 351 NIR wavelengths by using partial least squares (PLS)
regression (Martens and Næs, 1989). Note that this is done without using any design
information. By using leave-one-out cross validation, six PLS components are found to be
optimal.

A common way of illustrating the accuracy of such predictions is to plot predicted
values according to the cross validation against the measured values. Such a scatter plot
is presented in Figure 3 (r = 0.7130) together with a corresponding plot of contrasts. The
latter plot is made using exactly the same procedure as in Section 3. The Starch term is
the main cause of the correlation. If we exclude the Starch point from Figure 3(b), the
correlation decreases to 0.2612.

An interpretation of this result is that the Meat Flavor predictor is in reality an indirect
predictor of Starch. Meat Flavor is importantly affected by Starch. To predict Meat
Flavor, PLS uses Starch information that is contained in the NIR spectra. There is almost
no indication of the model’s ability to predict Meat Flavor beyond the relationship caused
by the Starch effect.
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PLS predictions vs. measurements and corresponding contrasts
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Figure 3: Meat Flavor predicted from NIR spectra versus the original Meat Flavor obser-
vations (a) together with the corresponding plot of contrasts (b).

5 PCA BASED ON CONTRASTS

Principal component analysis (PCA) can be based on the singular value decomposition
(SVD) (Strang, 1988),

Yc = UΛV T , (3)

where Yc is the centered data matrix. We assume that the diagonal matrix, Λ, is square
with only nonzero diagonal entries (the “economy size” decomposition). The columns of
U and V are orthonormal. In the context of PCA, V is the matrix of loadings and UΛ
contains the scores.

The loadings are unchanged if we perform SVD of the matrix of observed contrast
values. This follows from the fact that the SVD of MT Yc can be written as

MT Yc = (MT U )ΛV T . (4)

Since Yc is centered and since the first column of M represents the intercept, the entries
in the first row of MT Yc and MT UΛ are zero. The other rows of MT UΛ contain the
scores according to the contrasts.

Recalling the sausage experiment, we will consider the PCA of the NIR spectra (351
variables). The score plot is presented in Figure 4 together with the corresponding plot of
contrast scores. When interpreting these plots, it is important to have in mind that the
axes are not scaled according to their importance.

From Figure 4(b) we can see that the linear effect of Fat is dominating the first com-
ponent. Variation caused by the design is also very important for the second component.
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Scores and contrast scores from PCA
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Figure 4: Scores from PCA of NIR (a) together with the corresponding plot of contrast
scores (b). The first and the second component explain, respectively, 95.9% and 3.3% of
the variance.

Both Fat2, Starch and Starch*Fat are influencing this direction. If we had colored the
points in Figure 4(a) according to the Fat content we would also see from that figure how
the first component is dominated by Fat. However, this information is seen more directly
in Figure 4(b).

The two plots represent two ways of illustrating the same data variation. Figure 4(a)
shows how the single observations contribute to the variation and Figure 4(b) illustrates
in a direct way whether there are systematic structures according to the response surface
model.

6 CONCLUDING REMARKS

The above analysis of the sausage experiment is just one example of how to construct an
entire set of orthogonal contrasts according to a general linear model. To distinguish from
“a complete set of contrasts” (decomposition of a single model term) we have introduced
the expression “an entire set of contrasts” when referring to a decomposition into n − 1
contrasts. This means that we have one contrast associated with each degree of freedom
(DF) in the ANOVA table. Thus, model terms with several DFs have to be decomposed as
a complete set of contrasts. Furthermore, contrasts associated with the error term are also
constructed. Above, the error term was decomposed by saturating the model. In other
cases we may choose any arbitrary decomposition.
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In unbalanced cases the problem of defining contrasts corresponds to the problem of
choosing sums of squares. Since we require orthogonal contrasts, a decomposition according
to sequential sums of squares is the only possible choice. One could, however, imagine
“approximate” plots where the contrasts are defined according to other types of sums of
squares. This problem is, however, beyond the scope of the present paper.

In this paper we have demonstrated several examples of orthogonal contrast plotting.
In general, when original observations are plotted in some way, we can always make a
corresponding plot of orthogonal contrasts. In such a plot, information about the single
observations is lost. Instead, information about the contribution of single model terms
is obtained. The contrast plot contains exactly the same information about variances,
correlations and linear multivariate relations as the ordinary plot. We believe that plotting
orthogonal contrasts is a useful supplement to the established tools for analyzing designed
experiments.
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